Complexity and Computation of Connected Zero Forcing
نویسنده
چکیده
Zero forcing is an iterative graph coloring process whereby a colored vertex with a single uncolored neighbor forces that neighbor to be colored. It is NP-hard to find a minimum zero forcing set – a smallest set of initially colored vertices which forces the entire graph to be colored. We show that the problem remains NP-hard when the initially colored set induces a connected subgraph. We also give structural results about the connected zero forcing sets of a graph related to the graph’s density, separating sets, and certain induced subgraphs, and we characterize the cardinality of the minimum connected zero forcing sets of unicyclic graphs and variants of cactus and block graphs. Finally, we identify several families of graphs whose connected zero forcing sets define greedoids and matroids.
منابع مشابه
Computational Approaches for Zero Forcing and Related Problems
In this paper, we propose computational approaches for the zero forcing problem, the connected zero forcing problem, and the problem of forcing a graph within a specified number of timesteps. Our approaches are based on a combination of integer programming models and combinatorial algorithms, and include formulations for zero forcing as a dynamic process, and as a set-covering problem. We explo...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملZero forcing parameters and minimum rank problems
Abstract. The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a 1 graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by 2 G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive 3 semidefinite zero forcing number Z+(G) is introduced, and ...
متن کاملZero forcing number, constrained matchings and strong structural controllability
The zero forcing number is a graph invariant introduced in order to study the minimum rank of the graph. In the first part of this paper, we first highlight that the computation of the zero forcing number of any directed graph (allowing loops) is NP-hard. Furthermore, we identify a class of directed trees for which the zero forcing number is computable in linear time. The second part of the pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 229 شماره
صفحات -
تاریخ انتشار 2017